AN ASSISTIVE NAVIGATION PARADIGM FOR
SEMI-AUTONOMOUS WHEELCHAIRS
USING FORCE FEEDBACK AND
GOAL PREDICTION

by

JOHN H.C. STATON

Presented to the Faculty of the Graduate School of
The University of Texas at Arlington in Partial Fulfillment
of the Requirements
for the Degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

THE UNIVERSITY OF TEXAS AT ARLINGTON

May 2008
ACKNOWLEDGEMENTS

First and foremost I have to acknowledge and thank my loving parents and my sister. Without their support – not only financial but emotional and spiritual – this whole adventure that is graduate school would have been impossible.

Secondly, I must express my most sincere gratitude towards my advisor Dr. Manfred Huber and The University of Texas at Arlington’s Computer Science Department for believing in me and giving me the opportunity to succeed. I could not have asked for a better advisor than Dr. Huber, whose patience, wit and support have been paramount. It has been an honor and a privilege to collaborate and learn with him.

I must thank both members of my committee, Drs. David Levine and Gergely Zaruba for devoting their time and energy to me in this process.

I would like to thank all of my friends, both at UTA and at other universities, for the gift of intelligent conversation, discussion and discourse. I was able to bounce ideas off of them and commiserate with them over our shared trials and tribulations. Specifically I owe a debt of gratitude to Giles D’Silva, not only for pointing me towards Microsoft Robotics Studio, which ended up being an invaluable tool in the application portion of this project, but also for the many games of FIFA soccer and Wii Tennis, which kept me sane throughout the final semester.
I would be remiss if I didn’t thank various professors from my alma mater Augsburg College, including Drs. Karen Sutherland, Noel Petit, Larry Ragland, Larry Crockett, Charles Sheaffer, James Moen, Phil Adamo and Phil Quanbeck. I thank you all from the bottom of my heart.

Finally, the love and support of one Aleyna Stevens has proven to be the proverbial light in the darkness during the final semester of my Master’s program. I am unable to sum up in words how much she means to me, but including her in these acknowledgements can, I hope, act as but a small portion of my appreciation for her.

April 17, 2008
ABSTRACT

AN ASSISTIVE NAVIGATION PARADIGM FOR
SEMI-AUTONOMOUS WHEELCHAIRS
USING FORCE FEEDBACK AND
GOAL PREDICTION

John H.C. Staton, M.S.

The University of Texas at Arlington, 2008

Supervising Professor: Manfred Huber

As computer technology advances and facilitates an increased amount of autonomous sensing and control, the interface between the human and autonomous computer systems becomes increasingly important. This applies in particular in the realm of service robotics where robots with increasing levels of autonomy are constantly interacting with human users and where it is paramount to have an efficient way to convey user intentions and commands to the robot system, integrate them into the robot’s action and control, and to indicate robot control choices to the user in a “natural”, intuitive way. One particular example where semi-autonomous operation of a system has been shown to be of major benefit is in the case of advanced wheelchairs which benefit from local autonomy and fine control capabilities of sensor-driven
computer control systems but have to be under the higher-level control of the disabled user. This thesis investigates technologies aimed at facilitating the integration of such autonomous path planning capabilities with intuitive human control using a force-feedback interface. While force-feedback has been applied to artificially intelligent wheelchairs, only the surface of the capabilities of this interface mechanism has been scratched. This thesis seeks to expand upon the earlier work in this field by developing the idea of force-feedback not just as a tool for obstacle avoidance, but also as a tool for guiding the wheelchair user to their goal. To this point, harmonic function path planning has been integrated to create a new, more robust force-feedback paradigm. A force-feedback joystick has been used to communicate information from the user to the robot control system which uses this to infer and interpret the user’s navigation intentions as well as from the harmonic function-based autonomous control system to the user to indicate the system’s suggestions. To demonstrate and evaluate its capabilities his new paradigm has been implemented within the Microsoft Robotics Studio framework and tested in a simulated mobile system, with positive results.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS... iii

ABSTRACT .. v

LIST OF ILLUSTRATIONS.. x

LIST OF TABLES.. xi

Chapter

1. INTRODUCTION .. 1

2. BACKGROUND ... 5
 2.1 Wheelchair History ... 5
 2.2 Intelligent Wheelchairs .. 5
 2.3 Force-Feedback Enabled Wheelchairs ... 8
 2.4 Force-Feedback.. 10
 2.4.1 Mechanics ... 11
 2.4.2 Force-Feedback Effects .. 12
 2.5 Harmonic Function Path Planning... 13
 2.5.1 Harmonic Functions .. 13
 2.5.2 Harmonic Functions for Robotic Path Planning 14

3. METHODOLOGY ... 17
 3.1 Goal Prediction Loop... 17
 3.1.1 Goal Selection... 18
3.1.2 Harmonic Function ... 19

3.2 Run-Time Loop ... 20

3.2.1 Force Vector Creation .. 21

3.2.1.1 Direction .. 21

3.2.1.2 Risk Assumption ... 22

3.2.2 Playing Force-Feedback Effect ... 23

3.2.3 Motor Commands ... 24

4. IMPLEMENTATION .. 25

4.1 Implementation Setup ... 25

4.2 Microsoft Robotics Studio ... 26

4.2.1 Three Major Modifications .. 26

4.3 Design Implementation ... 27

4.3.1 Goal Prediction .. 28

4.3.2 Run-Time Loop ... 31

4.3.2.1 Risk Assumption ... 32

4.3.2.2 Force Vector Direction ... 34

4.3.2.3 Force-Feedback Effect Playback 35

5. EXPERIMENTS .. 36

5.1 Testing Methodology ... 36

5.1.1 Goal Selection ... 36

5.1.2 Virtual Environment Test Course .. 38

5.1.3 Post Test Survey ... 39
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Double Slotted Bale [45]</td>
<td>11</td>
</tr>
<tr>
<td>2.3 The harmonic function $\phi(x, y) = \frac{1}{\pi} \left(\arctan \frac{y}{x-1} - \arctan \frac{y}{x+1} \right)$ [47]</td>
<td>14</td>
</tr>
<tr>
<td>3.1 Outer Goal Prediction Loop Diagram</td>
<td>17</td>
</tr>
<tr>
<td>3.2 Run-Time Force Feedback Loop Diagram</td>
<td>20</td>
</tr>
<tr>
<td>4.1 Implementation Setup</td>
<td>25</td>
</tr>
<tr>
<td>4.2 Dashboard Window Screenshot</td>
<td>28</td>
</tr>
<tr>
<td>4.3 Path Planning Window Screenshot</td>
<td>29</td>
</tr>
<tr>
<td>4.4 Simulation Environment Window Screenshot</td>
<td>31</td>
</tr>
<tr>
<td>5.1 Three Goal Selection Environments (Similar, Semi-Similar, and Not Similar)</td>
<td>37</td>
</tr>
<tr>
<td>5.2 Test Course</td>
<td>38</td>
</tr>
<tr>
<td>5.3 Average Time Taken to Complete Course (seconds)</td>
<td>47</td>
</tr>
<tr>
<td>5.4 Average Number of Collisions</td>
<td>48</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Current and Recent Smart Wheelchair Research Projects [32]</td>
<td>6</td>
</tr>
<tr>
<td>5.1 Scenario Modifiers</td>
<td>37</td>
</tr>
<tr>
<td>5.2 Results for Movement Towards the Goal & Multiple Similar Goals</td>
<td>40</td>
</tr>
<tr>
<td>5.3 Results for Neutral Movement Eastward & Multiple Similar Goals</td>
<td>41</td>
</tr>
<tr>
<td>5.4 Results for Neutral Movement Westward & Multiple Similar Goals</td>
<td>41</td>
</tr>
<tr>
<td>5.5 Results for Movement Away From the Goal & Multiple Similar Goals</td>
<td>42</td>
</tr>
<tr>
<td>5.6 Results for Movement Towards the Goal & Two Semi-Similar Goals</td>
<td>42</td>
</tr>
<tr>
<td>5.7 Results for Neutral Movement Northeastward & Two Semi-Similar Goals</td>
<td>43</td>
</tr>
<tr>
<td>5.8 Results for Neutral Movement Southwestward & Two Semi-Similar Goals</td>
<td>43</td>
</tr>
<tr>
<td>5.9 Results for Movement Away From the Goal & Two Semi-Similar Goals</td>
<td>44</td>
</tr>
<tr>
<td>5.10 Results for Movement Towards the Goal with One Distinct Goal</td>
<td>44</td>
</tr>
<tr>
<td>5.11 Results for Neutral Movement Eastward with One Distinct Goal</td>
<td>45</td>
</tr>
<tr>
<td>5.12 Results for Neutral Movement Westward with One Distinct Goal</td>
<td>45</td>
</tr>
<tr>
<td>5.13 Results for Movement Away From the Goal with One Distinct Goal</td>
<td>46</td>
</tr>
</tbody>
</table>
CHAPTER 1

INTRODUCTION

“The majority of research and development activity in the field of control and automation applied to powered mobility for people with disabilities has concerned sophisticated technology and techniques. … A more effective approach is to make use of the most flexible and adaptable intelligence on the chair – the user. To accomplish this, researchers must design, build and test their systems with real users and contexts in mind.”

Researchers within the field of computer science drive themselves to push the limit of technology and create wholly new techniques to incrementally thrust the field forward. The goal is, no doubt, honorable, but somewhere in the quest for knowledge the external factors become the focus, replacing the issue at heart. The preceding quote by Paul Nisbet is an indication that even when the goal is to assist the handicapped and wheelchair-bound, the focus can be lost amongst a concern for “sophisticated technology and techniques”.

Early work in the field of “intelligent wheelchairs” has involved incremental improvements to the function of a wheelchair as an autonomous unit. Ultrasonic sensors, laser systems and even cameras and video systems have been put to use in the goal of allowing the wheelchair to detect obstacles, avoid them, sense doorways and pass safely through them, and even map the environment so that the wheelchair can
plan and navigate safe routes [2, 3, 4]. These sensor systems have even been integrated to form novel control systems, allowing the user to direct the wheelchair through movements of the head, or gestures [5].

All of this seems directed to target the wheelchair users with the strongest physical disabilities. However, not all wheelchair users have disabilities that require their wheelchair to do the majority of the work for them. For these users, a semi-autonomous system would be more appropriate, or even a system that provides no explicit autonomy. When the intelligence of the wheelchair decides that a certain action is pertinent to take, then the wheelchair should communicate this idea to the user, rather than performing the action itself, thus *assisting* the user, not replacing them. Possible methods of communication include sight and sound (Toyota’s I-Real Personal Mobility Concept, debuted in 2007, uses sound to indicate that the user is too close to an obstacle), but the purpose of this project is to communicate through force-feedback.

The reason why force-feedback has been chosen as the communication methodology for this semi-autonomous intelligent wheelchair framework is because it is an intuitive feedback system that does not distract the user (when applied correctly) as much as graphical or auditory interfaces, and can therefore lead to a more organic integration of the semi-autonomous control system.

Force-feedback has been shown to be an extremely useful concept for various tasks, such as biomanipulation in virtual reality, minimally invasive endoscopic surgery, maze-solving, mobility aids for blind children, steering tasks and combined steering-targeting tasks [6, 7, 8, 12] and has, in fact, been applied to a wheelchair with some
success [9, 10, 11]. However, the desire in all of these previous works has been focused solely on obstacle avoidance at all costs. The question is: why not design a system such that the user rarely, if ever approaches an obstacle? Why not design a system whose purpose is to infer what the user’s target destination is and guide the wheelchair user to his or her *goal*, not just direct the user away from obstacles?

Answering those questions is the motivation behind this thesis, as well as is designing and implementing an intelligent wheelchair system that uses force-feedback not just to help the user avoid obstacles, but to also subtly encourage the user to keep distance between the wheelchair and any obstacles. The framework designed here is semi-autonomous; it keeps control in the hands of the user but allows the wheelchair’s sensors and intelligence to communicate in tandem with the user.

This framework has three major components. The first one infers the intention of the user by trying to determine which goal, of all the possible target destinations, is the goal the user is trying to navigate to. The second component uses a harmonic function path planner to determine what it considers the best way to navigate to that destination and computes the discrepancy between its autonomous interpretation of the navigation task and the user’s driving and translates that into a corrective suggestion consisting of a directional change suggestion and a confidence/urgency measure for this change. The third component finally takes these suggestions and translates them into force-feedback to communication them to the user.

The remainder of this thesis is structured in the following way: Chapter 2 examines background work, the history of wheelchairs, including recent work on
intelligent and force-feedback-capable wheelchairs, and provides a review of important concepts (including force-feedback and harmonic functions) for the design and implementation of this project. Chapters 3 and 4 present the design philosophy and how the design was implemented, respectively, before Chapters 5 and 6 detail experiments performed with the implementation, and present and analyze the results. Chapter 7 concludes the thesis and discusses possible future work.
CHAPTER 2

BACKGROUND

2.1 Wheelchair History

The idea of a wheeled chair being used to assist the elderly or people with disabilities has been around since the sixth century A.D. and wheelchairs were well-developed in Europe and commonly found as early as the sixteenth century. But the last fifty years have seen some of the most and the fastest development in wheelchair technology [13]. The first electric wheelchairs were used during World War I for the handicapped, and consisted of an electric motor with a simple single-speed on/off switch applied to the existing manual-style wheelchair. The first patent was issued for an electric wheelchair in 1940 [14]. In the 1970’s wheelchair frames made of aircraft quality aluminum were introduced into the market, and starting in the 1990’s the idea of a “smart” wheelchair started to gain support.

2.2 Intelligent Wheelchairs

The history of artificially intelligent or “smart” wheelchair research and design is one of several prototype development projects but few commercial products. Table 2.1 lists a representative (yet not exhaustive) sample of fifteen current and recent research projects, and yet only two North American Companies, Applied AI Systems Incorporated [15] and Activ-Media sell smart wheelchairs for use by researchers and only one smart wheelchair, the Communication Aids for Language and Learning
(CALL) Center “Smart Wheelchair” [16] is commercially available, and even then only in Europe [17].

Table 2.1 Current and Recent Smart Wheelchair Research Projects [32]

<table>
<thead>
<tr>
<th>System Name</th>
<th>Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPWNS [18]</td>
<td>Vision, Dead Reckoning</td>
</tr>
<tr>
<td>The Intelligent Wheelchair [19]</td>
<td>Vision, Infrared, Sonar</td>
</tr>
<tr>
<td>INRO [21]</td>
<td>GPS, Sonar, Drop-Off Detector</td>
</tr>
<tr>
<td>MAid [22]</td>
<td>Sonar, Infrared, Laser Range Finder, Dead Reckoning</td>
</tr>
<tr>
<td>OMNI [23]</td>
<td>Sonar, Infrared, Bump, Dead Reckoning</td>
</tr>
<tr>
<td>RobChair [24]</td>
<td>Sonar, Infrared, Bump</td>
</tr>
<tr>
<td>SENARIO [26]</td>
<td>Dead Reckoning, Sonar</td>
</tr>
<tr>
<td>SIRIUS [27]</td>
<td>Sonar, Dead Reckoning</td>
</tr>
<tr>
<td>Smart Wheelchair [16]</td>
<td>Line Trackers, Bump Sensors</td>
</tr>
<tr>
<td>Smart Wheelchair [28]</td>
<td>Ultrasonic Beacons</td>
</tr>
<tr>
<td>TetraNauta [29]</td>
<td>Vision, Infrared, Sonar, Bump Sensors</td>
</tr>
<tr>
<td>VAHM [30]</td>
<td>Sonar, Infrared, Dead Reckoning</td>
</tr>
<tr>
<td>Wheelesey [31]</td>
<td>Vision, Infrared, Sonar</td>
</tr>
</tbody>
</table>

The various research projects can be distinguished from each other along a number of dimensions. The first way to classify intelligent wheelchairs is referred to as “form factor”. Within this framework, the smart wheelchair projects fall into one of three categories: modified robots, modified commercially available power wheelchairs, and “add-on units”. The earliest research attempts into intelligent wheelchair work were modified mobile robots onto which seats were attached [30, 33]. Once the field of smart wheelchair research was established, however, the majority of prototype development projects have been based on heavily modified, commercially available
power wheelchairs [2, 22, 23, 24]. The third category, “add-on units”, rely on creating a system that can be attached to and removed from a commercially available power wheelchair without heavily modifying the wheelchair itself with the idea that this method would be more economical and therefore more likely to assist users in the real world [32, 34, 35, 36, 37].

To further distinguish the various research projects, the onboard sensors used by each smart wheelchair can be discussed; Table 2.1 lists for each project the sensor systems used. The most popular sensor systems, based on frequency of use, are ultrasonic acoustic range finders (Sonar) and infrared range finders (IR). Sonar sensors are accurate when the emitted sound wave strikes an obstacle head on, but are susceptible to errors when the angle of incidence of the obstacle increases. Also, “cross talk” is possible, when a signal is received by a sensor other than the one that initially generated it. Infrared systems have their own difficulties with overly refractive surfaces. However, both sonar and infrared sensors are well understood, lightweight, and inexpensive.

Beyond sonar and IR systems, smart wheelchairs have been developed that utilize laser range finders (which give a 180-degree sweep of the environment), camera vision systems, GPS, ultrasonic beacons, and sensors placed in such a way as to detect a “drop off”, i.e. a sudden change in level that would occur with a staircase or a curb. Many systems also include bump sensors, but these end up as little more than a collision detection system.
Besides work in chair design, sensing and control, a significant amount of research has been applied to explore alternatives in the realm of interface methods for intelligent wheelchairs. Joysticks and switches are considered the “traditional” input methods, but they certainly are not the only type. Voice recognition has been used for smart wheelchairs, with varying degrees of success [2, 26, 29], but continues to be sought after because of the availability of commercial voice recognition software. Other methods include using a camera vision system to detect gestures [5] or the position of the user’s head [38], detecting the user’s “sight path” using electro-oculographic activity [31], or, introduced very recently, intercepting commands sent from the brain to the voice box [39]. The purpose of this thesis project is an expansion on a subset of the field of interface methods: force-feedback.

2.3 Force-Feedback Enabled Wheelchairs

Research in applying force-feedback technology to artificially intelligent wheelchairs has been limited, but can still serve as an example of the potential for force-feedback as applied to artificially intelligent wheelchairs. The following presents a review of this work.

The Luoson III, out of the National Chung Cheng University in Taiwan, was designed by Ren Luo, Chi-Yang Hu, Tse Min Chen and Meng-Hisien Lin to aid a blind user in his or her everyday activities [10]. The Luoson III uses an ultrasonic sensor arrangement on the wheelchair to gather environmental data, and uses a Microsoft Force Feedback Pro joystick to play force-feedback effects. The system is set up to use Grey theory [40] for motion prediction to predict the trajectory of the wheelchair and if
the wheelchair is going to strike an obstacle, then a force effect is played in an attempt to repel the user away from the obstacle [41].

Another wheelchair system out of the University of Pittsburgh, based on the work by James Protho, Edmund LoPresti and David Brienza, provided a description of two differing philosophies for force-feedback effect design [11, 42]. The two philosophies presented incorporate the ideas of “passive assistance” versus “active assistance”, where passive assistance results in a joystick that resists movement towards an obstacle, while active assistance causes the joystick to actively push away from the obstacle. Their pilot work indicated that “active assistance” gave the users the maximum efficiency [11]. The designers tested their algorithms by using a virtual reality system, and their results showed fewer collisions when using the system versus driving without it.

Finally, A. Fattouh, M. Sahnoun and G. Bourhis at Metz University in France created their own intelligent powered wheelchair reminiscent of the Luoson III [9, 43]. A series of distance sensors is utilized to create a feedback force vector that reflects away from the obstacle(s) perceived by the sensors. The force vector is created as an average of the feedback forces generated by all of the sensors, and each feedback force is given by:

\[f_i = \frac{1}{d_i} e^{j(\pi + \theta_i)} \]

where \(d_i \) and \(\theta_i \) are the magnitude and the angle of the vector between the \(i^{th} \) sensor and the nearest detected obstacle [5].
This system was implemented in a virtual reality simulation system using a Microsoft Sidewinder Force Feedback 2 joystick and resulted in fewer collisions, while no significant influence was found on drive time or drive distance.

2.4 Force-Feedback

“Force-feedback” is the general name given to any haptic interface device, “haptic” meaning anything related to or based on the sense of touch. Like other computer interface devices, a “force-feedback” device’s purpose is to provide input and/or output capabilities for the user. Audio interfaces, like speakers and microphones, use sound to interact with the user; visual interfaces use images to interact. Likewise, a haptic interface uses touch sensations, which range from simple vibration to much more complicated, robust effects that can emulate the feeling of weight, density, liquid, motion, and more, to interact with the user.

Haptics have been applied to various touch-based interface devices, including mice, trackballs, racing wheels, pointing devices like the Novint Falcon, and gamepads, but one of the earliest uses and most popular implementations is the force-feedback joystick. A joystick, in its simplest sense, is a vertical grip that pivots around a fixed end, and either the angle of the joystick about that pivot, or the displacement from the neutral position (given in two-dimensional Cartesian coordinates) is then transmitted to the computer [44]. Joysticks have been used in many applications, from flight control to gaming to electric powered wheelchairs because they present a simple, intuitive, and effective method for control.
2.4.1 Mechanics

There are three primary components to any force-feedback joystick: the gimbal, the transmission, and the actuators (or motors). Beyond this, joysticks may differ in their shape and size, the number of push-buttons available or the availability of other inputs such as a throttle or a “hat-switch”. The “gimbal” connects the stick of the joystick to the transmission. The most popular style of gimbal is known as a “double-slotted bale”. As seen in Figure 2.1, a double-slotted bale consists of two slotted arcs which are mounted perpendicular to each other through which the joystick slides. The displacement of each slotted arc is used to determine the angle of the joystick [45].

![Figure 2.1 Double Slotted Bale](image)

The transmission connects the gimbal to the actuators. Using a cable or belt drive, the system transmits the power from the actuators to the gimbal, allowing the user
to feel the force that the motors provide. Cable or belt drive transmissions are used in lieu of geared transmissions because of the need for back-drivability and tight force response while reducing noise, something that a geared transmission does not provide.

The actuators provide the force behind force-feedback. Force-feedback joysticks use two motors that exert about one pound of force per motor on average, peaking at around one and a half pounds. Motor quality is a concern; the higher the quality of the motors within the joystick, the more subtle the force that can be affected onto the user. Cheaper motors, on the other hand, exhibit higher friction, dampening out those subtle forces [45].

2.4.2 Force-Feedback Effects

The encapsulated description of force-response data sent to the force-feedback device is commonly referred to as an “effect”. Effects can be categorized in three distinct dimensions: static vs. dynamic, one-shot vs. open-ended, and interactive vs. time-based [45].

Static effects are pre-rendered force-feedback effects, designed and uploaded to the joystick in advance of being played. They can be described within the code of the application or externally designed in a sensation editor. Static effects can remain on the device as long as there is free RAM for them. Dynamic effects are modified as they are played; these are more complicated to design because they depend on the position of the joystick, amongst other factors, and are much more complicated to test for the same reason. However, they can give a more robust tactile response to the user.
One-shot effects are effects with a finite duration; they are simply executed when necessary and stop on their own. Open-ended effects require the system to monitor state information so that the system stops the effect when necessary. There is no duration for an open-ended effect; it will play as long as the system deems it to be appropriate.

Finally, effects are often divided between interactive and time-based. Interactive effects are based on the state of the joystick, whereas time-based effects are played identically regardless of the joystick’s position, velocity or acceleration. Interactive effects include spring effects (the feeling of pushing against a spring) and damper effects (the feeling of pushing through water), whereas time-based effects include constant force (a push in a given direction), and vibration. With these distinctions, force-feedback effects can be categorized and implemented. The kick of a pistol when fired, for example, would be static, one-shot, and time-based, while the feeling of driving a car through a pool of mud would be dynamic, open-ended and interactive. This method of categorization provides a robust metric for any and all force-feedback implementations.

2.5 Harmonic Function Path Planning

2.5.1 Harmonic Functions

The term “harmonic function” refers to any real function (i.e. function whose range is in the real numbers) with continuous second partial derivatives which satisfy Laplace’s Equation (Figure 2.2) [46].
\(\nabla^2 \psi = 0 \)

Figure 2.2 Laplace’s Equation

\(\nabla^2 \) is known as the Laplacian and is defined, in the most general form, as the sum of second derivatives:

\[
\nabla^2 \phi = \sum_{i=1}^{N} \frac{\partial^2 \phi}{\partial x_i^2}
\]

Solutions to Laplace’s Equation have no local maxima or minima, and are smooth and differentiable. An example of a harmonic function is seen in Figure 2.3.

Figure 2.3 The harmonic function \(\phi (x, y) = \frac{1}{\pi} \left(\arctan \frac{y}{x-1} - \arctan \frac{y}{x+1} \right) \)

2.5.2 Harmonic Functions for Robotic Path Planning

Harmonic functions have been used repeatedly in robotics research as a method for path planning in a known environment [48, 49, 50, 51]. The operation of harmonic functions for path planning can be illustrated using the example function given in Figure 2.3. Considering the points where the potential value, \(\phi \), is equal to one as obstacles and the points where \(\phi \) is equal to zero as goals, the potential at all other
points has two useful properties; i) the potential value at these points act as a description of where that point is relative to obstacles and goals (in terms of collision probability), and ii) the slope of the function at each point serves as a direction away from obstacles and towards goals.

As stated, the potential value at any given point gives a relative idea of where that point is in relation to obstacles and goals. In particular the potential value of the harmonic functions used for robotic path planning is equal to the probability that the agent will collide with an obstacle prior to reaching a goal given a random series of movements (i.e. assuming that the robot performs a random walk). This probability is 0.0 at a goal because the assumption is made that the agent won’t execute any more moves once it has reached its goal [52].

Considering the harmonic function as a description of a robot’s environment and placing the robot at any location within the domain of the harmonic function the potential function provides the robot with information on how to get to a goal, how to maneuver away from obstacles, and with the probability that it will collide with an obstacle while moving towards the goal, all useful for allowing an agent to operate autonomously.

In nature potential surfaces frequently define the movement paths of objects. For example, a ball placed on an uneven surface will result in the ball rolling from high points towards low points, finally resting in locations of local minima where the ball is “trapped”; beads of water will act in the same fashion. This is commonly known as taking “the path of least resistance”. Robots using potential field based path planning
use the same principle by performing gradient descent on a potential function where goals are defined as minima and obstacles as maxima. The benefit of using harmonic functions to encapsulate this, as noted in Section 2.5.2, is that there are no local minima, meaning that if a path from the current location to a goal exists, following the slope of a harmonic function, will lead the robot to a goal and without it being trapped along the way. Given the locations of obstacles and goals in the environment, the harmonic function can be calculated in a pre-processing step and then only has to be modified slightly at run-time when new obstacles are encountered, which is cost-efficient in computing terms.
CHAPTER 3

METHODOLOGY

The objectives for the assistive, semi-autonomous force-feedback paradigm introduced in this thesis for an intelligent wheelchair is naturally driven by two functionalities: the ability to infer the user’s intention in terms of their navigation goals, and the ability to help direct the user towards their intended goal and away from potential hazards. This natural distinction is reflected in this methodology through a design consisting of on two interconnected loops: an outer loop that attempts to infer the intended goal location of the user, and an inner loop that directs the user towards the inferred goal.

3.1 Goal Prediction Loop

Figure 3.1 Outer Goal Prediction Loop Diagram
The objective of the outer procedural loop is to estimate the desired navigation goal of the user based on the information available to the system and to provide this estimate to the run-time loop, enabling it to direct the user towards that goal. As shown in Figure 3.1, the outer loop utilizes run-time data of the user’s position and behavior together with information about the set of potential goals in the environment provided by an external user preference system to predict the intended goal location. Using this information it calculates the harmonic function for that goal, which it passes in a discretized grid format to the Run-Time System. This process is repeated when the user’s intended goal needs to be recalculated based on the new location, orientation and behavioral data from the user; this repetition can occur periodically according to a specific rate, or can potentially be event-driven, repeating when the user actions no longer match with the path to the selected goal.

3.1.1. Goal Selection

In this approach, an external system that uses known user preferences and features extracted from the wheelchair’s percepts to identify potential goal location for user navigation tasks (the exact operation of this user preference system is outside the scope of this thesis work and is assumed to exist as an external component), provides a set of potential goals. This goal set, together with data about the orientation of the wheelchair and a sequence of previous actions occurring while the Goal Selection step is conducted serves as input to the goal selection component. If only one goal is known, then no calculations need to be made, and this goal is used as the goal location in the harmonic function path planner.
However, in the majority of situations multiple potential goals will be present in a real world environment, for each of which the user preference system also provides a “confidence” factor that acts as a weight for the corresponding goal. The system then selects one goal by weighing the confidence for each goal against the amount of “work” that the system would have to incur to move to that goal. This “work” is the angular difference between a set of recent user actions θ_u and the action that would be in accordance with the path from the harmonic function path planner θ_h.

$$W = \Sigma (\theta_u - \theta_h)$$

The idea behind this is that the user’s intentions can be inferred from their already known tendencies and an observation of actions that the user has already made towards their goal compared to each of the goals.

The goal that is then selected by the harmonic function is the one with the best combination of “confidence”:

$$C = I_w - W$$

That is, the highest likelihood that the user would pursue that goal independent of the user’s recent actions (i.e. the initial weight I_w), and the least amount of “work” W necessary to direct the wheelchair towards the goal.

3.1.2. Harmonic Function

Given the goal prediction from the goal selection component, the system then calculates the harmonic function for the environment to set a potential field value for every location in the environment. Within the system, the environment is represented as a two dimensional array containing potential values where 1.0 indicates a wall or
obstacle, 0.0 indicates a goal, and all values in between indicate the potential for that location. These potential values are calculated by iterating through the values, \(grid[i,j] \), for all locations, \((x=i, y=j)\), in the environment and calculating a residual error, \(R_e \), for each grid value using Successive Over-Relaxation (SOR) [53] as:

\[
R_e = 0.25 \times (nb1+nb2+nb3+nb4) - grid[i,j] \\
grid[i,j] = grid[i,j] + w(R_e)
\]

\[
\begin{align*}
 nb1 &= grid[i-1,j] \\
 nb2 &= grid[i+1,j] \\
 nb3 &= grid[i,j-1] \\
 nb4 &= grid[i,j+1]
\end{align*}
\]

Where \(w \) is an over-relaxation constant to minimize the number of iterations necessary before convergence.

The maximum residual error is saved for each iteration over the grid, and as long as the maximum \(R_e \) is greater than \(10^{-14} \) another iteration of SOR is performed and the process is repeated. The threshold is determined here based on numerical resolution and required precision considerations and could be varied depending on the computer used and the size and complexity of the grid and the environment. When the maximum residual error is less than \(10^{-14} \), then the iteration is terminated and the process is assumed to have converged to the final harmonic function. The resulting grid is the internal representation of the environment and of the autonomous path predictions, and is used by the run-time loop for all of its force-feedback calculations.
3.2 Run-Time Loop

The Run-Time Loop (Figure 3.2) runs as the user is directing the wheelchair around the environment. In this loop location and orientation data are first acquired from the wheelchair and then used to produce a force vector (derived in terms of a direction and a “risk” factor, which will be discussed in the next sections). This vector is then translated into a force-feedback effect which is played on the user’s joystick. The joystick’s position is finally used to drive the wheelchair’s motors and the loop repeats. In this process the path prediction of the autonomous system only indirectly influences the wheelchair’s behavior by providing guidance to the user. The actual drive commands are always provided by the user (although the user could opt to simply follow the force vector, and thus follow the harmonic function path).
3.2.1. Force Vector Creation

The best way to encapsulate a force-feedback effect for wheelchair control is to consider it as a force vector. The reason that a force vector (i.e. a constant force) was chosen here as the effect is two-fold: i) it is a relatively intuitive way to suggest a command because the suggestion and the way the user implements the suggestion are identical, and ii) previous work of Protho et.al. found that active assistance gives the user the maximum efficiency (as stated in Section 2.4). Allowing feedback and control commands to use the same device and corresponding formats also allows the user to let the wheelchair drive itself by not counteracting any of the force-feedback but simply following the suggested directions. The two components that make up and describe a force vector are the direction of the vector, and the length or amount of force behind it. The following sections will describe how the force vector is created by describing how the direction and force are calculated, and how the force-feedback effect is played.

3.2.1.1 Direction

The direction for the force vector can not simply be the direction of the slope of the harmonic function for the user’s current location in the environment because the wheelchair is non-holonomic, i.e. it cannot move in arbitrary directions at any point in time but is limited to forward, backward, forward turning, backward turning, and turning in place. Because of this consideration, the direction of the force vector must be relative to the orientation of the wheelchair (or the joystick).

To avoid discontinuities between grid locations, the harmonic function path planner uses interpolation to make the (approximate) harmonic function continuous, and
thus provides a real-valued gradient as the preferred path direction of the autonomous path planning component. Using this, the system then computes the angular difference between the gradient direction \(\theta_g \) and the orientation of the wheelchair \(\theta_o \) for use as the direction for the force-vector \(\Theta_f \):

\[
\Theta_f = \theta_o - \theta_g
\]

3.2.1.2 Risk Assumption

The amount of force for the force vector is calculated to reflect how “risky” the indicated command of the user is when compared to the optimal drive direction as given by the harmonic function. The rationale here is that if the user is not giving the wheelchair a “risky” command, then the semi-autonomous system would not need to emphasize as much what it considers the “proper action”. However, if the action is risky then the joystick should indicate this to the user by producing a more forceful effect and thus by providing a stronger “incentive” for the user to reconsider the action.

Risk, in this sense, can be divided into two categories: short-term, current risk and assumed future risk. The quantifiable properties of current or “local” risk are:

- The velocity of the wheelchair
- The potential value at the wheelchair’s current location
- The potential value at the location that the chair will occupy next.
- The difference between the two potential values

Risk at the “future” level is relatively simpler:

- The potential value at the wheelchair’s current location
• The potential value at a location some distance ahead of the wheelchair (scaled based on the current velocity)

• The difference between the two potential values

Formally these concepts can be encapsulated in the equations:

\[R_f = R_c - R_f \]

\[R_c = V + P_{[x,y]} - (P_{[x,y]} - P_{[xn,yn]}) \]

\[R_f = P_{[x,y]} - P_{[xf,yf]} \]

The velocity \(V \) of the wheelchair adds to the local risk of the user’s command \(R_c \) in a straightforward way; the faster the wheelchair is moving, the more likely that random behavior at that position will result in a collision with an obstacle. The potential value \(P_{[x,y]} \) at that location is the probability that collision will occur, given random movements [52]. The potential value at the next location \(P_{[xn,yn]} \) is important, because if its value is less than the value at the current location, then the user is moving to a location that is “safer” since the probability of a collision decreased. This can be seen as going “down the slope” of the harmonic function towards the goal and away from obstacles. This is also true for future, long-term risk \(R_f \). When the potential value at a location some distance ahead of the robot in the direction that the user has indicated \(P_{[xf,yf]} \) is used, if it is less than the current potential value, the user is directing the to a safer location given that no short term risks during the short distance move is incurred.

What the tradeoff between the two risk components allows the system to do is, depending on the capabilities of the user, to not discourage the user to perform a locally more risky action, such as moving through a narrow doorway, if this leads to a gain in
terms of the risk in the foreseeable future. The end result of describing risk in this manner is that the riskiest behavior would be one where the user is moving quickly, near an obstacle, and away from the goal or towards an obstacle.

3.2.2. Playing The Force-Feedback Effect

With the direction and force of the effect calculated, they are then applied to the joystick in the form of a force-feedback effect. In this way the system communicates to the user both the severity of the situation (through the amount of force applied) and what action the system thinks the user should perform next in order to safely reach the goal (indicated by the direction of the effect).

3.2.3. Motor Commands

Finally, the position of the joystick is sent to the robot control system to interpret and turn into wheelchair movements. In the traditional way, forward and backward position of the joystick is here interpreted as a desired velocity while lateral angular position is translated into steering commands for the wheelchair. The resulting movement, in turn, effects the user’s position in the harmonic function grid, the sensor data and the velocity of the wheelchair, providing new data for the next iteration of the run-time loop.
CHAPTER 4
IMPLEMENTATION

4.1 Implementation Setup

The implementation of the design methodology has been created on a Dell Dimension 8250, with a 2.66 GHz Pentium 4 CPU running Windows XP, using Microsoft Visual Studio 2005 and the C# programming language (chosen because of its connection with DirectX and DirectInput). The force-feedback joystick used for the implementation was a Microsoft Sidewinder Force Feedback 2. This joystick was chosen because of its use in previous academic explorations in force-feedback research [9, 10]. The entire implementation has been implemented on top of Microsoft Robotics Studio.

Figure 4.1 Implementation Setup
4.2 Microsoft Robotics Studio

Implementing the design outlined in Chapter 3 has been completed as a component in the context of Microsoft’s Robotics Studio (MSRS). MSRS is a Windows-based environment created to assist academic, hobbyist and commercial developers of robotic applications. MSRS includes a physics-based simulation engine [54], which was desirable for this project, and is modifiable through C#, Visual Basic, or VPL [55], the graphic dataflow-based programming language designed for MSRS.

4.2.1 Three Major Modifications

The implementation for this project has been incorporated into MSRS through modifications to three primary files: SimulatedDifferentialDrive.cs, SimulationTutorial2.cs, and DriveControl.cs. The first two here are mainly concerned with the details of the robot and the environment and the ways in which sensory information is processed and passed to the actual force feedback and goal prediction components, while the third contains the main implementation of the proposed framework.

The simplest modification of the three is the modification to SimulatedDifferentialDrive.cs.

For the purposes of the implementation, the position and orientation of the wheelchair within the environment are needed to be made available to other parts of the simulation (specifically to DriveControl.cs, as will be seen). The only location where the position and orientation are known is within SimulatedDifferentialDrive, and so the function UpdateStateFromSimulation() was modified to encapsulate the position and
orientation and pass them to the functions that DriveControl.cs uses within the UpdateMotorData() function. The main reason for this was to avoid the additional overhead of having to implement a sensor processing and robot localization component which would be used in the context of the real wheelchair to correct errors in the odometric position estimate of the robot.

The modifications to SimulationTutorial2.cs are also rather simple. Within PopulateWorld(), a function was added in to load data from the text file “map1.txt” using C#’s StreamReader and extract the date into an internal two-dimensional array that represents the environment. This data contains information that the simulation uses to create the environment and where to place the robot upon initialization. The environment is created within the simulation in a function called AddWalls(); within this function the implementation iterates through grid[i,j], placing 1x1x1 walls at every location at which the discretized representation in grid has a value of 1. PopulateWorld() has also been modified to add a Pioneer 3DX Robot at the location given in the grid[i,j] with the value of 2, this is the starting location for the simulated robot.

4.3 Design Implementation

The majority of the implementation and, in fact, all of the design is incorporated as a modification to MSRS’s DriveControl.cs. DriveControl.cs runs what is referred to within MSRS as the “Dashboard”, the graphical user interface that allows the user to connect to the robotic entity (which, in the implementation, is the wheelchair), connect to a joystick to send motor commands, connect to the laser range finder on the robot and
see what values the sensors are returning, and, in its modified state, gives the user access to the path planner and the force-feedback effects.

For the implementation, certain initializations need to occur. An environment needs to be loaded from an external map file. For ease of use during testing, this environment needs to be loaded into the internal environmental representation of MSRS and into the path-planning graphics. In addition the joystick needs to be initialized so that force-feedback effects can be played.

![Figure 4.2 Dashboard Window Screenshot](image)

To achieve these modifications, the function `initPPGraphics()` was implemented, which, like the function within `SimulationTutorial2.cs`, loads data from the text file “map1.txt” using C#’s `StreamReader` capabilities for file input/output interaction, and extracts it into an internal two-dimensional array known as `grid[i,j]` to represent the environment. `InitPPGraphics()` also initializes the graphics for path-
planning using C#’s simple *Bitmap* graphics techniques. Following this graphics and environment initialization, `initFFDevices()` acquires the joystick device as a DirectInput device and enables the ability to play force-feedback effects [56].

4.3.1 Goal Prediction

With the graphics, environment and force-feedback joystick initialized, the core of the design implementation can now access all the necessary components of the system and its details are discussed in the following sections. To simulate the functionality of the external user preference component, the user here first selects potential goals in the environment by clicking on the path planning graphic in the Dashboard (Figure 4.3), which calls the function `picPPlan_Click()`. Based on the location of the mouse cursor within the GUI, the goal location is set within *grid*, the internal two-dimensional array, and *goalCount* is incremented by one for each goal. The goal information is also stored within a separate array, *goalArray*, with each goal receiving a weight that decrements as more goals are added so that each new goal has a smaller initial weight than any previous goal, thus simulating the idea of user preferences which indicate different likelihoods with which a particular user might pursue each of the goals. This GUI-based goal set definition process used for the experiments presented in this thesis serves as a stand-in for the automatic user preference component which would in practice identify potential goal locations based on user tendencies and preferences. The latter goal array is used for the goal selection component in the outer loop.
Below the path planning display in the GUI (shown in Figure 4.3) are two buttons, one of which clears the display and the other, when clicked, initiates path planning by predicting the user’s goal if more than one goal has been selected by the user, and then initiating path planning for the selected goal. When this is finished, updatePPGraphics() is called, which paints the new grid values to the path planning window.

![Figure 4.3 Path Planning Window Screenshot](image)

There are two major constructs that make up path-planning: goal selection and harmonic function generation. Goal Selection is only initiated if the user selects more
than one goal; and proceeds by first determining the weight for each goal. This, in
theory, would be given to the path-planning system by an external system for measuring
and tracking user tendencies and preferences.

Goal Selection is implemented within the function runPPbutton_Click(), the
function initiated when the “Run Path Planning” button is clicked by the user. If
goalCount is greater than one, then Goal Selection’s implementation is initiated. As the
robot moves through the environment, a queue of five actions is kept. As a new action
is committed, the oldest action in the queue is removed. When the goal selection is
initiated, the confidence value for each goal is modified based on if the last five actions
indicate an intention towards that goal (the action’s similarity to the path created by the
harmonic function). The idea of remembering the last five actions of the user was
decided as a result of early pilot work indicating that fewer actions kept reduced the
accuracy of the goal selection system, whereas more actions kept had a negligible effect
on the system.

Once all goals have had their confidence values computed, the goal with the
highest likelihood of being the one targeted by the user is selected as the goal for path-
planning, and the rest of the goal locations are set to the initial value for empty space
within grid.

The harmonic function is generated in the same way as described in Chapter 3.
A function called sor_once_2D(), based on the concept of Successive Over-Relaxation,
is ran until the residual error that it returns is less than 10^{-14}. Sor_once_2D() iterates
through the grid, calculating the residual error at each grid location and keeping track of
it. For each grid location, its value is updated by adding its residual error multiplied by the SOR constant for a regular two dimensional grid to its previous value, and in doing so the potential function is relaxed until it converges to a harmonic function over the entire grid (note that the harmonic constraint is by design violated at the goal and obstacle locations by holds at every location in free space).

4.3.2 Run-Time Loop

With the pre-processing step accomplished, the run-time loop is initiated when the user connects to the wheelchair entity and turns on the motors. As the Run-Time Loop runs, the user will see the results of their actions (i.e. joystick commands) in the Simulation Environment window (Figure 4.4).

![Simulation Environment Window Screenshot](image)

Figure 4.4 Simulation Environment Window Screenshot

Within DriveControl.cs there is a class called UpdateMotorData() that is called continuously and whose input is the variable data that gives DriveControl access to the functions and parameters of the simulated differential drive mechanism of the
wheelchair. This is important because this gives the program access to the robot entity’s position, orientation and velocity.

The modifications to UpdateMotorData() are extensive, and begin by first checking to see if the robot is in the same location as the goal, and if it is, then all force-feedback effects are halted. If the wheelchair is not at the goal, then the function continues by checking to see if the position of the chair has changed sufficiently to cause it to enter a different grid cell, the internal discretized environment representation. The wheelchair’s position is maintained and updated constantly within this function, and no further action is taken if the wheelchair is still within the same grid cell. The reason for this check and the limitation of the force feedback update rate to grid cell changes is here strictly for program optimization reasons. If the force-feedback effects are played regardless of whether the robot has changed position, then the system slows down drastically due to the high rate of I/O actions to the joystick which in pilot work overwhelmed the C# interface. If the chair has indeed changed positions, then in accordance with the design methodology the force vector direction and the force vector magnitude, or risk, is calculated and translated into a force effect for the joystick.

4.3.2.1 Risk Assumption

To be able to determine the relative amount of risk of the action indicated by the user through the joystick for the wheelchair at its current location, four variables are used: the velocity of the wheelchair, the orientation of the wheelchair, the wheelchair’s Cartesian coordinates within the environment, and the direction of the joystick.
The direction of the joystick and the current location and orientation of the wheelchair allow the system to determine the potential value of the next location in the environmental grid, enabling it to evaluate the difference between the current and the next value of the harmonic potential, and thus its slope in the user-desired direction.

To incorporate the risk calculation and force feedback generation within Microsoft Robotics Studio, the riskAssessment() function has been added to DriveControl.cs and is called from UpdateMotorData(). RiskAssessment() receives as inputs the velocity (as a double precision real), and direction, curX, and curY (in discretized format as integers). Direction is, as it is in other parts of the implementation, discretized into eight quadrants and encoded as an integer ranging from one to eight, where one represents northwest, two represents north, etc. increasing in the clockwise direction, indicating the cardinal directions.

This allows for the pre-calculation of a manageable set of potential force effects and simplifies the implementation of the risk assessment and force feedback components by using a simple switch statement for every directional possibility. The implementation discretizes the concept of risk for this very purpose; this was decided upon based on the early testing, where it was found that loading in a static force effect and playing it did not slow the simulation down, whereas attempting to modify a dynamic force effect did.

For every directional possibility, nextPotential is determined and using this the system adds a level of local risk if velocity is below -8, because velocity is negative within MSRS if the robot is moving forward, if potential is above 0.9, and if the
difference between potential and nextPotential is less than zero, meaning that the robot is moving conversely to the slope of the harmonic function. This number of prevalent local risk factors is considered equivalent to the local risk equation given in Chapter 3 with the difference that this number is not continuous, whereas the equation would be.

Future risk is implemented similar to the way in which the risk attributed to the next potential value is determined within local risk. Again, a switch statement based on the direction is used, where for the direction the user chooses the next potential value is calculated. However because this is “future” risk, the calculation isn’t as simple; the amount of distance in the future that the system examines is scaled based on the current velocity of the wheelchair.

These two calculations of risk are purposefully discrete for this implementation; as previously stated, the system uses a pre-calculation of a manageable set of potential force effects; for every combination of direction, current risk and future risk there exists a correlating force effect.

4.3.2.2 Force Vector Direction

With the risk level known, the modified UpdateMotorData() then calculates the direction for the force vector based on the difference between the slope of the potential field around the robot’s current location and the orientation of the robot.

4.3.2.3 Force-Feedback Effect Playback

Within loadFFEfect() another switch/case statement loads the appropriate force-feedback effect for every direction/risk pair into the joystick. These effects are static and were created using Microsoft’s Force Feedback Editor within Microsoft’s
DirectX SDK [57]. Once loaded, the program returns to UpdateMotorData(), the effect is played, the robot’s position is updated within the grid, motor commands are sent to the simulated robot, and the process repeats.
CHAPTER 5
EXPERIMENTS

In an attempt to better understand the ramifications of the choices made in the design and implementation of this thesis project, experiments have been undertaken. The two most crucial portions of the project have been tested: goal selection in the outer loop and the effectiveness of the force feedback effects in the run-time loop. The following sections describe the experiments carried out, followed by the results of the experiments, and their analysis.

5.1 Testing Methodology

5.1.1 Goal Selection

The goal selection system is a vital component of both the design and implementation of this project and therefore an evaluation of its sensitivity to user deviations from the optimal path to the intended goal and an analysis in terms of potential weaknesses in the system is paramount. The problem with testing the goal selection system is that it is, in part, based on a classification that exists in theory but not yet in practice: the system of user preferences and tendencies that gives the potential goals their initial weights. To alleviate this factor, the system was evaluated by testing the different scenarios that may occur.

The factors that influence the scenario that the goal selection is based on can be classified into three categories: the weight given to the goal that the user intends, the
actions the user has already taken towards the intended goal, and how well aligned the wheelchair is with respect to the goals as seen in Table 5.1.

<table>
<thead>
<tr>
<th>Goal Weight</th>
<th>Previous Actions</th>
<th>Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Towards the intended goal</td>
<td>Very similar</td>
</tr>
<tr>
<td>Medium</td>
<td>Neutral movement</td>
<td>Slightly similar</td>
</tr>
<tr>
<td>Low</td>
<td>Away from the intended goal</td>
<td>Very dissimilar</td>
</tr>
</tbody>
</table>

To experiment with the goal selection system then, all combinations of the different categories of factors were observed and the results of the Goal Selection system were recorded. Each experiment consisted of a simple environment where five distinct goals were created within the simulation by selecting them within the GUI. Figure 5.1 shows the different scenarios.

For the experiments where the goals were “very similar”, three goals were placed in a way that made them appear similar to the system (i.e. optimal paths to these goals followed very similar trajectories) while the other two were kept distinct. For the
experiments with “slightly similar” goals, two goals were placed in a way to appear somewhat similar (i.e. such that optimal paths to them diverged only slowly) and the other three were kept distinct. In the tests for “very dissimilar” goals, finally, the intended goal was entirely distinct from the other goals from the perspective of the wheelchair. To evaluate the accuracy of the goal prediction under these different conditions, the user performed actions toward each of the intended goals, neutral actions that are neither towards nor away from the goal, and actions that were away from the goal. The resulting likelihood of the prediction for each goal were recorded and analyzed.

5.1.2 Virtual Environment Test Course

To quantify the effect of using a harmonic function path planning system as a basis for force-feedback corrective suggestions on wheelchair performance, a set of tests has been performed using the computer simulation system described in Chapter 4. Test subjects used the force-feedback joystick to guide the wheelchair through a virtual environment (shown in Figure 5.2) and test runs were made both with and without force-feedback to serve as a comparison.
Figure 5.2 Test Course

The test subjects were all persons without major disabilities. The time taken to complete the course, and the number of collisions were evaluated as performance measures. The test subjects were given five minutes before the tests were initiated to allow them to familiarize themselves with the simulation, both with and without force-feedback. Six test runs were then performed for each subject, three with force-feedback and three without.

5.1.3 Post Test Survey

As a final measurement to evaluation the performance and effectiveness of the implementation of this design, all subjects were asked for their opinions after using the system. They were queried on the following topics:

- Were the force-feedback suggestions helpful in avoiding obstacles?
- Were the force-feedback suggestions helpful in approaching the goal?
• Between too forceful and not forceful enough, where would you rank the force-feedback effects?

The test subjects’ responses were tallied and the results are analyzed in Section 5.2.3.

5.2 Test Results

5.2.1 Goal Selection Test Results

Nine scenarios were tested for the nine combinations of the scenario modifiers for similarity and user movements: towards, neutral and away from the goal combined with similar, semi-similar and non-similar goals in the goal set. The goal here was to evaluate the sensitivity of the goal prediction approach with respect to different environment conditions and user behavior in terms of deviations from the best path to the intended goal. To obtain the results, each scenario was run five times, with the weight of the intended goal decreasing in rank for each run to test the third scenario modifier, goal weight. The system’s predicted goal together with the corresponding predicted likelihood for each goal were recorded. The results are listed and analyzed below.

The results for the experiment with three similar goals and user movement towards the intended goal (Goal 1 in Figure 5.1, first environment) are shown in Table 5.2. Here, goals 1 through 3 received very similar predicted likelihoods, with goal 1 (the intended goal whose initial weight decreased with each run) averaging a predicted likelihood of 32.95%, goal 2 a likelihood of 33.70%, and goal 3 a likelihood of 33.35%. Goals 4 and 5 were predicted by the system to have zero chance of being the user’s goal
in every run. Goal 1 was predicted as the intended goal in the first run, when it had the highest initial weight, but goal 2 was predicted in runs 2 through 5, when it started with the highest initial weight. This shows that in situations where paths toward multiple goals are very similar the initial preference weight can dominate the goal selection, thus underscoring the importance of an appropriate user preference system.

Table 5.2 Results for Movement Towards the Goal & Multiple Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>33.63%</td>
<td>33.39%</td>
<td>32.98%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 2</td>
<td>33.39%</td>
<td>33.63%</td>
<td>32.98%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 3</td>
<td>32.98%</td>
<td>33.63%</td>
<td>33.39%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 4</td>
<td>32.59%</td>
<td>33.82%</td>
<td>33.59%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 5</td>
<td>32.15%</td>
<td>34.05%</td>
<td>33.81%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Average Prediction Likelihood</td>
<td>32.95%</td>
<td>33.70%</td>
<td>33.35%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Neutral movement with a cluster of similar goals resulted in some interesting behavior. When the neutral movement was eastward, shown in Table 5.3, goals 1 and 2 both always received a likelihood prediction of 0%, whereas goal 3 received 0% twice and 96.71% once, goal 4 received 98.57% twice and 3% once, and goal 5 received 1.34% twice and 0% in the third run. Goal 4 was the predicted goal in the first two runs, and goal 3 was predicted in the third.

Table 5.3 Results for Neutral Movement Eastward & Multiple Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>98.57%</td>
<td>1.34%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>98.57%</td>
<td>1.34%</td>
</tr>
<tr>
<td>Run 3</td>
<td>0%</td>
<td>0%</td>
<td>96.71%</td>
<td>3%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Neutral movement westward with a cluster of similar goals (Table 5.4) resulted in goals 1 and 3 receiving a predicted likelihood of 0% twice, goal 2 receiving 0% once and 8.12% the second time, goal 4 receiving 48.30% once and 0% the second time, and goal 5 receiving 51.70% likelihood and 91.88% likelihood of being the user’s intended goal. In both runs, goal 5 was the goal selected by the system. This behavior can be understood by realizing that in all cases the neutral movement performed conformed more closely to either the intention of reaching a goal to the right (goals 3 and 4) or to the left (goals 2 and 5) of the current location.

Table 5.4 Results for Neutral Movement Westward & Multiple Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>48.30%</td>
<td>51.70%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>8.12%</td>
<td>0%</td>
<td>0%</td>
<td>91.88%</td>
</tr>
</tbody>
</table>

User actions that were away from the cluster of similar goals resulted in each of those three goals being predicted to be equally unlikely to be the user’s intended goal, resulting in likelihoods of 0% for every run (Table 5.5). Goals 4 and 5 were then, for four of the five runs, considered roughly equally likely, with goal 4 having a slightly higher predicted likelihood percentage because of its higher initial weight. This caused goal 4 to be the systems predicted goal in every run.

Table 5.5 Results for Movement Away From the Goal & Multiple Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>50.51%</td>
<td>49.49%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>50.51%</td>
<td>49.49%</td>
</tr>
<tr>
<td>Run 3</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>54.98%</td>
<td>45.02%</td>
</tr>
<tr>
<td>Run 4</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>50.09%</td>
<td>49.05%</td>
</tr>
<tr>
<td>Run 5</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>50.43%</td>
<td>49.56%</td>
</tr>
</tbody>
</table>
Table 5.5 - continued

| Average Prediction Likelihood | 0.00% | 0.00% | 0.00% | 51.30% | 48.52% |

In regards to the environment experiments with two semi-similar goals and user movement towards the intended goal (goal 1 in Figure 5.1, second environment), goal 1 was selected by the system as the user’s intended goal regardless of its initial weight, which decreased with every run, resulting in an average predicted likelihood of 79.48% as shown in Table 5.6. Goal 2, the semi-similar goal, came in second in every run with an average of 20.52% likelihood. Goals 3 through 5 received a predicted likelihood of 0% for every run.

Table 5.6 Results for Movement Towards the Goal & Two Semi-Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>82.11%</td>
<td>17.89%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 2</td>
<td>81.54%</td>
<td>18.46%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 3</td>
<td>81.35%</td>
<td>18.65%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 4</td>
<td>81.08%</td>
<td>18.92%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 5</td>
<td>71.31%</td>
<td>28.69%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Average Prediction</td>
<td>79.48%</td>
<td>20.52%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Neutral movement was again split between northeastward actions, and southwestward movement. In response to the first type of neutral movement (shown in Table 5.7) the system predicted goal 2 as the user’s intended goal for each of the three runs with predicted likelihoods of 59.65%, 59.42%, and 94.09% respectively. Each time, goal 3 was the next likely goal, with predicted likelihoods of 40.30%, 40.58%, and 5.90%. Goals 1, 4 and 5 were seen by the system as unlikely to be the user’s
anticipated goal, never receiving a prediction of more than 0%. Again, the predicted goal was the one that was most closely aligned with the movement direction.

Table 5.7 Results for Neutral Movement Northeastward & Two Semi-Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>59.69%</td>
<td>40.30%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>59.42%</td>
<td>40.58%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 3</td>
<td>0%</td>
<td>94.09%</td>
<td>5.90%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

When the neutral movement was to the southwest (Table 5.8), goals 3, 4 and 5 were predicted by the system as the user’s most likely projected goals, with goal 5 being the goal selected most likely for each of the two runs. Goal 3 received predicted likelihoods of 31.73% and 24.14%, goal 4 received 30.92% and 22.77%, and goal 5 resulted in 37.34% and 52.09%. Goals 1 and 2 always received predictions of 0%.

Table 5.8 Results for Neutral Movement Southwestward & Two Semi-Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>0%</td>
<td>31.73%</td>
<td>30.92%</td>
<td>37.34%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>0%</td>
<td>24.14%</td>
<td>22.77%</td>
<td>52.09%</td>
</tr>
</tbody>
</table>

Movement away from goal 1 (Table 5.9) eliminated its likelihood in each of the five test runs. Goal 2 was also mostly eliminated as an option except for the fifth and final experiment where it had a predicted likelihood of 18.79%. Goals 4 and 5 averaged 31.22% and 21.04% predicted likelihood respectively, with goal 4 receiving values as low as 13.17% in run 5 and as high as 45.05% in run 4. Goal 5 received prediction likelihoods as low as 0.76% in run 4 and as high as 32.69% in run 1. Goal 3 was selected by the system in every run as the intended goal with an average likelihood percentage at 43.90%.
Table 5.9 Results for Movement Away From the Goal & Two Semi-Similar Goals

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>0%</td>
<td>33.95%</td>
<td>33.36%</td>
<td>32.69%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>0%</td>
<td>38.03%</td>
<td>31.36%</td>
<td>30.61%</td>
</tr>
<tr>
<td>Run 3</td>
<td>0%</td>
<td>0%</td>
<td>34.66%</td>
<td>33.16%</td>
<td>32.18%</td>
</tr>
<tr>
<td>Run 4</td>
<td>0%</td>
<td>0%</td>
<td>54.19%</td>
<td>45.05%</td>
<td>0.76%</td>
</tr>
<tr>
<td>Run 5</td>
<td>0%</td>
<td>18.79%</td>
<td>58.66%</td>
<td>13.17%</td>
<td>8.98%</td>
</tr>
<tr>
<td>Average Prediction Likelihood</td>
<td>0.00%</td>
<td>3.76%</td>
<td>43.90%</td>
<td>31.22%</td>
<td>21.04%</td>
</tr>
</tbody>
</table>

The results of the experiments with one distinct goal and user movement towards that goal (goal 1 in Figure 5.1, third environment) are presented in Table 5.10 and are much simpler to describe than the results for any of the other goal selection experiments since they represent the ideal case where goals are distinct and the user follows the best path. Goal 1 averaged 100% predicted likelihood regardless of initial weight, and was selected by the system for each run as the inferred goal. Goals 2 through 5 always received 0% predicted likelihood.

Table 5.10 Results for Movement Towards the Goal with One Distinct Goal

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 2</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 3</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 4</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 5</td>
<td>100%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Average Prediction Likelihood</td>
<td>100.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
<td>0.00%</td>
</tr>
</tbody>
</table>

Neutral movement, as in the first series of goal selection experiments, was split between eastward movement and westward movement. Eastward movement favored goal 2, as it was selected for each run as the intended goal, receiving predicted likelihood percentages of 91.19%, 50.21% and 50.21%. Goal 3 was commonly the
second most likely goal, receiving 4.50%, 49.79% and 49.79% respectively. Goals 1, 4 and 5 were not predicted to be the likely goal, often receiving 0% as a predicted likelihood.

Table 5.11 Results for Neutral Movement Eastward with One Distinct Goal

<table>
<thead>
<tr>
<th></th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>91.10%</td>
<td>4.50%</td>
<td>3%</td>
<td>1.27%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>50.21%</td>
<td>49.79%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Run 3</td>
<td>0%</td>
<td>50.21%</td>
<td>49.79%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

When the neutral movement was westward, the system favored goal 5 as its prediction for most likely to be the user’s intended goal as it was selected in both runs and received likelihood percentages of 75.37% and 100%. Goal 4 received 26.67% once, but 0% in the second run, and goals 1 through 3 received 0% in both neutral movement experiments.

Table 5.12 Results for Neutral Movement Westward with One Distinct Goal

<table>
<thead>
<tr>
<th>Neutral (W)/Not Similar</th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>26.67%</td>
<td>75.37%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>100%</td>
</tr>
</tbody>
</table>

The constant result for the experiment on movement away from one distinct goal (Table 5.13) was that goal 1, the goal being moved away from, was constantly predicted by the goal selection system as having zero possibility of being the user’s intended goal, and that for every run goals 2 through 4 had some predicted potential for being the projected user goal. Goal 2 was selected by the system in three of the five runs, and goal 4 was selected in the other two runs, yet goal 4 resulted in the highest average
predicted likelihood percentage. Also, though it was never selected as the inferred user goal, goal 5 had the second highest average predicted likelihood with 25.47%. Goals 2 and 3 had an average of 24.26% and 23.79% predicted likelihood, respectively.

Table 5.13 Results for Movement Away From the Goal with One Distinct Goal

<table>
<thead>
<tr>
<th>Away/Not Similar</th>
<th>Goal 1</th>
<th>Goal 2</th>
<th>Goal 3</th>
<th>Goal 4</th>
<th>Goal 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run 1</td>
<td>0%</td>
<td>25.58%</td>
<td>25.26%</td>
<td>24.83%</td>
<td>24.33%</td>
</tr>
<tr>
<td>Run 2</td>
<td>0%</td>
<td>23.57%</td>
<td>22.91%</td>
<td>26.96%</td>
<td>26.56%</td>
</tr>
<tr>
<td>Run 3</td>
<td>0%</td>
<td>26.75%</td>
<td>26.26%</td>
<td>24.18%</td>
<td>22.82%</td>
</tr>
<tr>
<td>Run 4</td>
<td>0%</td>
<td>25.77%</td>
<td>25.51%</td>
<td>25.04%</td>
<td>23.68%</td>
</tr>
<tr>
<td>Run 5</td>
<td>0%</td>
<td>19.61%</td>
<td>18.99%</td>
<td>31.44%</td>
<td>29.95%</td>
</tr>
<tr>
<td>Average Prediction Likelihood</td>
<td>0.00%</td>
<td>24.26%</td>
<td>23.79%</td>
<td>26.49%</td>
<td>25.47%</td>
</tr>
</tbody>
</table>

5.2.2 Virtual Environment Test Course Results

Six test subjects were used for the user testing portion of the experiments, and the environment that was used for the course can be seen in Figure 5.2. The subjects, demographically, formed three pairs of one male and one female. The first pair was in their twenties, the second pair in mid-life (forties and fifties) and the third pair was retirees in their seventies. All subjects were given time before the test runs to familiarize themselves with the system, both with force-feedback and without. Three test runs were given without force-feedback, and three with, and the runs were alternated in an attempt to avoid a bias in terms of the user becoming more familiar with the system as the experiments wore on. In addition, user 6, an elderly gentleman, suffers from uncontrollable tremors in his hand, and thus provides additional insight as to how this might affect his performance in the system, and how the system might potentially help him maneuver, even with this condition.
As seen in Figure 5.3, all subjects showed improvements in the length of time it took them to complete the test course, with an average improvement of 14.5%. The largest improvement from tests without force-feedback to tests with force-feedback came from user 6, the elderly gentleman with hand tremors, whose average time improvement was 40.14%.

All users also showed improvement in the number of collisions incurred while completing the course (Figure 5.4). Subjects 5 and 6 incurred the most number of collisions in both sets of tests (with force-feedback and without), and both incurred fewer collisions in all test runs with force feedback.
5.2.3 Post Test Survey Results

In response to the first question, “Were the force-feedback suggestions helpful in avoiding obstacles?” all users responded with a “Yes.” User 6 also wrote that he did not “get” the concept of what the suggestions were attempting to do at first, but once he did, he found it quite helpful. Responses were similar for the second question, “Were the force-feedback suggestions helpful in approaching the goal?” Five out of the six users answered unequivocally “Yes”, but user 5 answered “Somewhat.” In explanation to the answer, she indicated that the factor keeping her answer from being a full “Yes” was reliant on the amount of force behind the force-feedback effects, and that she felt they were too strong for her. If they had been less forceful, she said, than they would have been more helpful to her.

That was her answer to the third question, “Between too forceful and not forceful enough, where would you rank the force-feedback effects?” It was to this
question that the users’ answers varied. As stated, user 5 found the effects to be too forceful, and users 1 and 3 agreed. Users 2, 4, and 6, however, stated that the effects were not forceful enough, and would have been potentially more helpful had they been more forceful. Despite this, however, all users showed excitement for the potential of the concept after testing the system.
CHAPTER 6

ANALYSIS

In this chapter, in an effort to better understand the experimental results given in Chapter 5, an analysis of the results is provided. The results of the goal selection experiments are analyzed first, followed by a combined analysis of the user test experiments and the survey results.

6.1 Goal Selection Analysis

The most important results from the goal selection experiments are those in which the simulated user moved *towards* the intended goal. In the experiments where the goal was distinct and no other goal was similar to it, the system performed as it should, predicting a likelihood of 100% in every run for that goal, regardless of weight. When the goal had a second, somewhat similar goal, the system was still accurate, picking the proper goal in every run with an average predicted likelihood of about 80%. Both of these results are positive, and what would be expected from a goal selection system.

The only potential issue came with the experiments on a cluster of similar goals. In the first run, the intended goal was predicted properly because it had the highest initial weight, but when this initial weight was decreased and another goal outranked it, that second goal was selected by the system as the inferred user goal.
Upon review, however, this is the best that can be expected of this system, or any system. The goal in question had two other goals not only in similar proximity to it, but also with similar methods of approach. The only way to truly differentiate between these goals is to either wait for more user actions to obtain more data identifying the user’s intended goal, or to rely more heavily on the external system of user preferences to give the goal selection system a proper differentiation between the similar goals. Since this design operates on the assumption that such a system of user preferences will be part of the application when applied to a real-world scenario, this is an acceptable outcome for the experiments.

Experiments on neutral movements also had acceptable results, with the system selecting the goals that were most likely to be the user’s goal based on the user’s actions. The effect of neutral movements on the goal in question, however, is noteworthy. Neutral movement was equivalent to movement away from the goal in terms of the predicted likelihood of the intended target. Though ultimately the system made acceptable predictions, it is possible that neutral movement should not lower the system’s confidence in a goal as much as it currently does.

In all cases where the user moved away from the goal, it and any similar goals were effectively eliminated, having been given a predicted likelihood of 0%. The only exception was the fifth run of the semi-similar goals, but even in this case, when the similar goal received a prediction likelihood of 18.79%, it was still outweighed by a more likely goal, goal 3, which received a predicted likelihood of 58.66% and was selected as the user’s predicted goal. This represents the expected result in that moving
away from the path towards a goal can only be interpreted as indicating that the goal in question is not the user’s intended destination.

6.2 User Testing/Survey Analysis

The results of the User Testing and Survey are very positive, especially the opinions of the oldest set of users. In regards to the quantitative experiments, the results are encouraging, but expected. Previous research in the field of force-feedback as applied to assistive technologies yielded positive results in the area of time to complete a given maneuvering task, and in number of collisions [9, 11, 42]. It was expected when this thesis project was started that similar results should follow from the implemented design.

What are noteworthy are the responses to the survey questions, specifically the responses from the elderly pair, users 5 and 6. Their acceptance of the technology and positive, even excited response to their testing of it is encouraging and a testament to the potential that force-feedback and artificial intelligence have in furthering the field of assistive technologies. Their side comments were even helpful in generating ideas for how to modify the system to make it more efficient in assisting the user; user 6 felt that he did not understand the concept at first (but once he did, he found it very helpful), and encouraged the idea of a “training system” to help the user get more of a feel for what the system is trying to accomplish.

Finally, the third question regarding the force of the effects, whether the effects were too forceful or not forceful enough indicated a divide between the two genders. Users 2, 4 and 6, all males, indicated that the effects could have been more forceful for
their tastes, and might have been more helpful to them if they were, and yet users 1, 3, and 5, all female, felt the forces to be too much, and indicated that the system would better suit their needs if the forces were lessened.

This indicates that a system where the forces are tailored to the user would potentially be more effective, and this tailoring can be as simple as adding a slider to the graphical user interface that allows the user to change the forces themselves, or as complex as developing a system that tests the user’s strength and adjusts the power of the force-feedback effects appropriately. Independent of the choice of solution, however, it is apparent at this stage that having the same level of force (dependant on risk) for every user is reduces the benefit of the system, and that a solution to this problem could further improve the system’s effectiveness.
CHAPTER 7

CONCLUSION

This thesis developed and implemented a novel concept for goal prediction and force-feedback in a semi-autonomous wheelchair, and evaluated its effectiveness on a simulated system. This chapter provides final thoughts and conclusions for this work, along with a discussion of future directions.

7.1 Final Thoughts

The ultimate motivation behind this thesis was to develop technologies that could help people who have disabilities that require them to use a wheelchair. The idea was, as inspired by the quote from Paul Nisbet, to create a system that assisted the user, rather than replace the user. We believed that force-feedback would be the most appropriate and efficient method of assisting the user in maneuvering in the environment because of its intuitive nature and its potential to avoid the distractive effects of other means of feedback, such as GUIs, auditory interfaces, etc. In addition, this belief is supported by previous research, both in and outside the field of assistive technology that indicated, unequivocally, that force-feedback is simple, intuitive, and efficient in assisting users with steering tasks.

Previous research in the field of assistive technology had already explored the idea of force-feedback in an intelligent wheelchair, but these attempts had solely been to help the user avoid obstacles. This work takes a broader approach noting that obstacle
avoidance is not the only task that wheelchair users engage in, and that inferring and approaching environmental goals was potentially more important and could, when coupled with an autonomous path planning component, address both obstacle avoidance and navigational guidance in a more efficient and safe manner. Due to its previous use in robotic path planning and its relation to collision probabilities in the context of uncertain movement commands, harmonic functions were seen as an ideal way of encompassing both ideas.

Following these considerations, a design was developed and implemented that addresses all of the objectives: the ability to infer a user’s goal based on what the system can know about the user’s intentions, the ability to guide the user towards that goal using a combination of force-feedback effects and harmonic function path planning, and the ability to assist the user in avoiding collisions with obstacles. The framework was implemented in Microsoft’s robotic simulation environment (Microsoft Robotic Studio) and the experiments performed with the system indicate a positive response from all users, whose ages and abilities ranged from young and healthy to elderly and with some hand coordination issues.

7.2 Future Work

To address comments from all of the elderly users, modifications are necessary for the adjustment of the joystick forces. The thought has been raised that this modification could incorporate artificial intelligence concepts to create a self-adjusting force metric, but there is the possibility that allowing the user to tailor the forces to his
or her needs may be sufficient. Also, a more thorough training system to help users familiarize themselves with the system may be another line of future work to explore.

Beyond that, a set of challenges will appear when moving this system beyond a simulation and onto a real motorized wheelchair, including how to gather environmental data and user position/orientation data in the real world. This relates to the need for tying the proposed approach into the sensor system of the wheelchair and into a practical user preference system. To address the former, a number of simultaneous localization and mapping (SLAM) techniques have been developed over the last decade which allow robot systems to determine their location while simultaneously establishing a map of their surroundings using data gathered from either sonar, laser, and/or vision sensors. These approaches could form a basis for the perceptual capabilities needed for a physical wheelchair in real world environments. For the latter, machine learning techniques could be used to analyze previous goal choices of the user to extract means of classifying and subsequently predicting target locations from the perceptual information of the wheelchair.
REFERENCES

BIOGRAPHICAL INFORMATION

John Staton received his Bachelor of Science in Computer Science from Augsburg College in Minneapolis, Minnesota in 2005, and his Master of Science in Computer Science from The University of Texas at Arlington in Arlington, Texas in 2008. He has committed to attend the Doctoral program in Computer Science at The University of Texas at Arlington starting Fall 2008 and continuing to work with Dr. Manfred Huber in the field of Robotics and Artificial Intelligence.